Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 52: 85-92, July. 2021. graf, tab
Article in English | LILACS | ID: biblio-1283600

ABSTRACT

BACKGROUND: Nonribosomal peptide synthases (NRPS) can synthesize functionally diverse bioactive peptides by incorporating nonproteinogenic amino acids, offering a rich source of new drug leads. The bacterium Escherichia coli is a well-characterized production host and a promising candidate for the synthesis of nonribosomal peptides, but only limited bioprocess engineering has been reported for such molecules. We therefore developed a medium and optimized process parameters using the design of experiments (DoE) approach. RESULTS: We found that glycerol is not suitable as a carbon source for rhabdopeptide production, at least for the NRPS used for this study. Alternative carbon sources from the tricarboxylic acid cycle achieved much higher yields. DoE was used to optimize the pH and temperature in a stirred-tank reactor, revealing that optimal growth and optimal production required substantially different conditions. CONCLUSIONS: We developed a chemically defined adapted M9 medium matching the performance of complex medium (lysogeny broth) in terms of product concentration. The maximum yield in the reactor under optimized conditions was 126 mg L-1, representing a 31-fold increase compared to the first shaking-flask experiments with M9 medium and glycerol as the carbon source. Conditions that promoted cell growth tended to inhibit NRPS productivity. The challenge was therefore to find a compromise between these factors as the basis for further process development.


Subject(s)
Peptide Synthases/metabolism , Bioreactors/microbiology , Escherichia coli , Temperature , Biotechnology , Carbon/metabolism , Models, Statistical , Electrophoresis, Polyacrylamide Gel , Bioengineering , Hydrogen-Ion Concentration
2.
Chinese Journal of Biotechnology ; (12): 1450-1456, 2021.
Article in Chinese | WPRIM | ID: wpr-878647

ABSTRACT

Improving the creativity is crucial to postgraduate training nowadays. The course of Modern Microbial Biotechnology is an optional specialized course for microbiology-related postgraduates. To explore a new teaching mode for improving the creativity of postgraduate students, we reformed the teaching content, the teaching method and the evaluation mode of this course. Through case study teaching, seminar-style classroom and implementation of a new assessment method, the students not only mastered professional knowledge and disciplinary frontiers of modern microbiology technology, but also improved their ability of discovering, analyzing and solving problems. The reformed course teaching mode is effective in fostering postgraduates' creativity.


Subject(s)
Humans , Biotechnology , Students
3.
Electron. j. biotechnol ; 38: 32-39, Mar. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1051317

ABSTRACT

BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatography­mass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites


Subject(s)
Acrolein/analogs & derivatives , Eugenol/metabolism , Biotransformation , Gibberella/metabolism , Biodegradation, Environmental , Acrolein/metabolism , Biotechnology , Chromatography, High Pressure Liquid , Renewable Resources , Batch Cell Culture Techniques
4.
Electron. j. biotechnol ; 31: 48-56, Jan. 2018. ilus, tab
Article in English | LILACS | ID: biblio-1022268

ABSTRACT

Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.


Subject(s)
Bacteria , Biotechnology , Biodiversity , Microbiota
5.
Electron. j. biotechnol ; 27: 8-13, May. 2017. ilus, graf
Article in English | LILACS | ID: biblio-1010145

ABSTRACT

Background: GABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated. Results: The fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h. Conclusions: RAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.


Subject(s)
Limosilactobacillus fermentum/enzymology , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Temperature , Recombinant Fusion Proteins , Cellulose , Cloning, Molecular , Adsorption , Enzymes, Immobilized , Escherichia coli , gamma-Aminobutyric Acid/biosynthesis , Hydrogen-Ion Concentration
6.
Electron. j. biotechnol ; 26: 27-32, Mar. 2017. tab, ilus, graf
Article in English | LILACS | ID: biblio-1009654

ABSTRACT

Background: An effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated. Results: Recombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1. Conclusions: Insertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.


Subject(s)
Ethanol/metabolism , Escherichia coli/metabolism , Hydrogen/metabolism , Biotechnology , Recombinant Proteins , Clostridium/genetics , Clostridium/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Fermentation , Glycerol , Hydrogen-Ion Concentration , Hydrogenase/genetics , Hydrogenase/metabolism
7.
Electron. j. biotechnol ; 19(6): 12-20, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840307

ABSTRACT

Background: Hyalodendriella sp. Ponipodef12, an endophytic fungus from a poplar hybrid, was a high producer of botrallin and TMC-264 with various bioactivities. In this study, the influences of eight metal ions (i.e.,Mn2+,Na+, Mg2+,Zn2+,Cu2+,Fe2+,Fe3+ and Al3+) on botrallin and TMC-264 production in liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12 were investigated. Results: Three most effective metal ions (Zn2+,Cu2+ and Mg2+) along with their optimum concentrations were screened. The optimum addition time and concentrations of Zn2+,Cu2+ and Mg2+ were further obtained respectively for improving botrallin and TMC-264 production. The combination effects of Zn2+,Cu2+ and Mg2+ on the production of botrallin and TMC-264 by employing statistical method based on the central composite design (CCD) and response surface methodology (RSM) were evaluated, and two quadratic predictive models were developed for botrallin and TMC-264 production. The yields of botrallin and TMC-264, which were predicted as 144.12 mg/L and 36.04 mg/L respectively, were validated to be 146.51 mg/L and 36.63 mg/L accordingly with the optimum concentrations of Zn2+ at 0.81 mmol/L, Cu2+ at 0.20 mmol/L, and Mg2+ at 0.13 mmol/L in medium. Conclusion: The results indicated that the enhancement of botrallin and TMC-264 accumulation in liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12 by the metal ions and their combination should be an effective strategy.


Subject(s)
Ascomycota/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Pyrones/metabolism , Ascomycota/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Metals/pharmacology , Pyrones/chemistry
8.
Electron. j. biotechnol ; 19(6): 38-42, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840311

ABSTRACT

Background: Mannheimia haemolytica is the primary bacterial pathogen in causing bovine respiratory disease with tremendous annual losses in the cattle industry. The leukotoxin from M. haemolytica is the predominant virulence factor. Several leukotoxin activity assays are available but not standardized regarding sample preparation and cell line. Furthermore, these assays suffer from a high standard error, a prolonged time consumption and often complex sample pretreatments, which is important from the bioprocess engineering point of view. Results: Within this study, an activity assay based on the continuous cell line BL3.1 combined with a commercial available adenosine triphosphate viability assay kit was established. The leukotoxin activity was found to be strongly dependent on the sample preparation. Furthermore, the interfering effect of lipopolysaccharides in the sample could be successfully suppressed by adding polymyxin B. We reached a maximum relative P95 value of 14%, which is more than seven times lower compared to current available assays as well as a time reduction up to 88%. Conclusion: Ultimately, the established leukotoxin activity assay is simple, fast and has a high reproducibility. Critical parameters regarding the sample preparation were characterized and optimized making complex sample purification superfluous.


Subject(s)
Animals , Bovine Respiratory Disease Complex/microbiology , Exotoxins/analysis , Mannheimia haemolytica/pathogenicity , Microbiological Techniques , Adenosine Triphosphate , Lipopolysaccharides , Polymyxin B
9.
Acta sci., Biol. sci ; 38(2): 149-155, abr.-jun. 2016.
Article in English | LILACS | ID: biblio-2531

ABSTRACT

The permeabilization was used to transform microorganisms in cell biocatalysts with high enzymatic activity. The Saccharomyces fragilis IZ 275 yeast cells were permeabilized with ethanol, as permeabilizing agent. To optimize the permeabilization conditions were used the design of Box-Behnken 15 trials (3 central points). The independent variables and their levels were ethanol (29, 32 and 35%), temperature (15, 20 and 25°C) and time (15, 20 and 25 min). The answer (Y) function has beta-galactosidase activity (U mg-1). The optimum conditions for obtaining a high enzymatic activity were observed in 35% ethanol concentration, temperature 15ºC and 20 min. treatment time. The maximum activity of the enzyme beta-galactosidase obtained was 10.59 U mg-1. The permeabilization of the S. fragilis IZ 275 cells was efficient.


A permeabilização foi usada para transformar células de microrganismos em biocatalisadores com alta atividade enzimática. As células de levedura de Saccharomyces fragilis IZ 275 foram permeabilizadas com etanol, como agente permeabilizante. Para otimizar as condições de permeabilização foi utilizado o delineamento de Box-Behnken com 15 ensaios (3 repetições no ponto central) . As variáveis independentes e seus níveis foram etanol (29, 32 e 35%), temperatura (15, 20 e 25ºC) e tempo (15, 20 e 25 min.). A função resposta (Y) foi atividade de beta-galactosidase (U mg-1). As condições ótimas para a obtenção de uma alta atividade enzimática foram observadas em 35% de concentração de etanol, temperatura de 15°C e tempo de tratamento de 20 minutos. A máxima atividade da enzima beta-galactosidase obtida foi de 10.59 U mg-1. A permeabilização das células de S. fragilis IZ 275 foi eficiente.


Subject(s)
Saccharomyces , beta-Galactosidase , Permeability , Saccharomyces , Yeasts , Biotechnology , Biocatalysis , Hydrolysis , Lactose
SELECTION OF CITATIONS
SEARCH DETAIL